Modifications and Improvements on Iris Recognition
نویسندگان
چکیده
Iris recognition is a well-known biometric technique. John Daugman has proposed a method for iris recognition, which is divided into four steps: segmentation, normalization, feature extraction and matching. In this paper, we evaluate, modify and extend John Daugman’s method. We study the images of CASIA and UBIRIS databases to establish some modifications and extensions on Daugman’s algorithm. The major modification is on the computationally demanding segmentation stage, for which we propose a template matching approach. The extensions on the algorithm address the important issue of pre-processing, that depends on the image database, being especially important when we have a non infra-red camera (e.g. a WebCam). For this typical scenario, we propose several methods for reflexion removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images, show that our template matching based segmentation method is accurate and faster than the one proposed by Daugman. Our fast pre-processing algorithms efficiently remove reflections on images taken by non infra-red cameras.
منابع مشابه
A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملEvaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کامل